Intervirology, 2008; 51,101-111, 2008, Epub 2008 May 21.

GENERAL PREADAPTATION OF VIRAL INFECTORS TO THEIR HOSTS

(accompanying file)

by

I. Barrai, G. Salvatorelli, E. Mamolini, S. De Lorenzo, A. Carrieri, A. Rodriguez-Larralde¹, and C. Scapoli Department of Biology, University of Ferrara, 44100 Ferrara, Italy ¹Laboratorio de Genetica Humana, Departamento de Medicina Experimental, IVIC, Caracas

ABSTRACT

We tested the hypothesis of optimal adaptation of viral infectors to their eukaryotic hosts, using 1) linear correlation in codon and aminoacid usage between pairs of organisms, and 2) canonical correlation between groups of hosts and infectors. The frequencies of the 61 codons and of the 20 aminoacids were counted for 69,481,022 codons in 179,770 coding sequences of six hosts, man, pig, chicken, catfish, potato, rice, and seven parasites, HIV1, African swine fever virus, Avian infectious bronchitis virus, Ictalurid herpesvirus, Potato virus X, Rice stripe virus, and Rice blast fungus. This last was included as a control of viral parasites, since it is not an endocellular invader. The codon correlations between parasites and their hosts vary considerably, being very low between Swine and African Swine Fever virus (r=0.18), and high and significant between Potato and Potato virus X (r=0.60). These correlations might indicate different stages of evolution toward optimal adaptation of the parasite codon distribution to the host tRNA pools. The aminoacid correlations are consistently high, varying from r=.71 between pig and ASF, to .88 between catfish and its herpesvirus. It was observed that both in virus and hosts, there is a high negative correlation between frequency of an aminoacid and its molecular weight. Correcting for the dominant effect of molecular weight decreases only slightly most of the correlations involving aminoacids. Therefore it was advanced that viral infectors might be preadapted to their hosts because of the general similarities of the tRNA pools of hosts, and that further evolution toward optimization would be dependent on the size of the divergence between the codon distributions of infector and host. It was also advanced that pre-adaptation does not necessarily imply origin of the virus by lateral transfer from the present host, since the correlation of the molecular weight of aminoacids with their abundance in proteins is a general phenomenon.

Organism 1) Hosts:	Sequences	Codons	Codons/Sequence:	3
Homo sapiens Sus scrofa Gallus gallus Ictalurus Solanum tuberos Oryza sativa	um	84949 2028 5579 255 839 70055	36349745 798957 2541006 67311 347079 24804673	428 394 455 263 414 354
All host		163705	64908771	397
2) parasites				
Human immunodef African swine f Chicken infecti bronchitis viru	iciency 1 ever virus ous s	14408 572 426	3928725 165790 204853	273 290 481
Ictalurid herpe	s virus	93	38973	419
Potato virus X		91	33487	368
Rice stripe vir	us	300	86072	287
Rice blast fung	us	161	89356	555
All parasites		16051	4547256	283
All 13 organism	======== S	======== 179756	69456027	==== 386

Table 1. The database used in the present study.

Table 2- Correlations between molecular weight (MW) and degeneracy (DY, coded as 1,2,3,4 and 6) and the frequencies of aminoacid usage in 13 organisms. Six hosts, six viral parasites and an eukaryotic parasite. First row MW, 2^{nd} row degeneracy, 3^{rd} , 4^{th} and 5^{th} row codon effective number of the species.

	MAN	HIV	SUS	ASF	CHK	CHB	IKT	IKV	POT	POX	ORY	RSV	RBF
MW	57	47	57	33	57	61	56	60	58	58	62	48	65
DY	.80	.71	.79	.48	.74	.65	.77	.82	.70	.62	.82	.55	.81
\mathbf{N}_{E}	54.1	47.3	51.2	56.8	54.8	46.4	53.6	48.6	52.3	54.5	56.9	49.0	51.4
N_{V}	49.6	44.6	46.8	45.6	49.2	48.7	48.5	44.6	47.4	48.7	52.3	44.0	47.2
\mathbf{N}_{Q}	54.7	50.4	53.0	52.8	54.8	48.7	54.1	51.1	52.8	53.7	56.4	49.8	53.0

Table 3- Correlations between the frequencies in codon and aminoacid usage in 13 organisms. Six hosts, six viral parasites and an eukaryotic parasite. First row, codons, second row, aminoacids

MAN	MAN 1.00	HIV .31 .87	SUS .97 .88	ASF .30 .69	CHK .97 .99	CHB .09 .81	IKT .91 .95	IKV .54 .88	POT .37 .94	POX .66 .85	ORY .74 .93	RSV .58 .79	RBF .70 .94
HIV		1.00	.17 .88	.54 .71	.39 .88	.47 .72	.28 .86	15 .83	.57 .86	.53 .78	.08 .83	.46 .69	.02 .84
SUS			1.00	.18 .71	.93 .98	06 .85	.90 .95	.67 .90	.21 .95	.59 .85	.76 .92	.49 .80	.78 .94
ASF				1.00	.38 .73	.64 .75	.31 .78	07 .61	.68 .86	.39 .71	.08 .52	.46 .84	.02 .84
СНК					1.00	.19 .83	.94 .97	.52 .88	.48 .97	.72 .88	.74 .88	.66 .83	.68 .94
CHB						1.00	.18 .90	36 .86	.82 .90	.32 .78	04 .77	.57 .84	17 .83
IKT							1.00	.56 .88	.44 .97	.71 .87	.70 .88	.70 .90	.71 .91
IKV								1.00	13 .88	.33 .87	.71 .92	.18 .76	.72 .93
POT									1.00	.60 .87	.27 .88	.76 .90	.09 .92
POX										1.00	.58 .83	.72 .68	.54 .88
ORY											1.00	.43 .68	.86 .97
RSV												1.00	.32 .76
RBF													1.00

MAN=Homo sapiensHIV=Himmunodeficiency virus type 1SUS=Sus scrofaASF=African swine fever virusCHK=Gallus gallusCHB=Chicken infectious bronchitis virusIKT=Ictalurus sp.IKV=Ictalurid herpes virusPOT=Solanum tuberosumPOX=Potato virus XORY=Oryza sativaRSV=Rice stripe virusRBF=Riceblast fungus

Table 4. Percent of variance due to the first three eigenvalues of the dispersion matrices of frequencies in 1) hosts alone 2) parasite alone 3) all the organisms studied. Rice blast fungus excluded.

A)	CODONS Component	Hosts	Parasites	Both
	1 2 3	76.9 14.7 5.1	50.6 24.1 9.9	54.0 24.8 5.6
	First 3 components	97.7	84.6	84.4
B)	AMINOACIDS			
	Component	Hosts	Parasites	Both
	1 2 3	95.5 2.5 1.1	80.7 7.8 5.0	85.8 5.9 2.6
	First 3 components	99.1	93.5	94.3

Table 5. Correlations in frequencies between Hosts and Infectors.

a) Linear correlation between individual hosts and their infector

Codons	Aminc	acids	Host	Infector	
	+MW	-MW			
0.60*	0.87*	0.80*	Potato	Potato virus X	
0.56*	0.88*	0.82*	Catfish	Ictalurus virus	
0.43*	0.68*	0.56*	Rice	Rice stripe virus	
0.31*	0.87*	0.84*	Man	HIV1	
0.19	0.83*	0.75*	Chicken	Chicken infect. bronch.	virus
0.18	0.71*	0.68*	Pig	African swine fever	
0.86*	0.97 *	0.96 *	Rice	Rice blast fungus	

-MW: Frequencies corrected for the effect of molecular weight.

c) Canonical correlations between hosts and intracellular infectors

	Α.	Codons	в.	Aminoacids	
First axis		.939		+MW .992	-MW .989
Second axis		.888		.919	.909
Third axis		.516		.662	.661

Legends to figures

Figure 1.

The regressions of the aminoacid frequencies on molecular weight for the organisms studied here.

Figure 2.

Correlations of codon and aminoacid frequencies for the pairs Pig-ASF (2a,2b), Man-HIV1 (2c,2d), and Potato-PVX (2e,2f). Under the Subak-Sharpe hypothesis, the system Pig-ASF is the most recent and the system Potato-PVX the most ancient.

Figure 3.

Dendrograms of infectors and hosts from the correlation matrices for codons (3a) and for aminoacids (3b). Note the cluster Man-Chicken for codons and the cluster Man-Pig for aminoacids.

Figure 4.

Correlations between the projections on the first axes of the codon swarms for hosts and infectors.

Figure 5.

Correlations between the projections on the first axes of the aminoacid swarms for hosts and infectors, before (5a) and after (5b) correction for the effect of molecular weight. Note the considerable effect of MW on the position of triptophan, glycine, and alanine.

Figure 1

The regressions of the aminoacid frequencies on molecular weight for the organisms studied here.

Figure 2a

Figure 2b

Figure 2c

Figure 2d

Figure 2e

Figure 2f

Correlations of codon and aminoacid frequencies for the pairs Pig-ASF (2a,2b), Man-HIV1 (2c,2d), and Potato-PVX (2e,2f). Under the Subak-Sharpe hypothesis, the system Pig-ASF is the most recent and the system Potato-PVX the most ancient.

Figure 3a

Figure 3b

Dendrograms of infectors and hosts from the correlation matrices for codons (3a) and for aminoacids (3b). Note the cluster Man-Chicken for codons and the cluster Man-Pig for aminoacids.

Figure 4

Correlations between the projections on the first axes of the codon swarms for hosts and infectors.

Figure 5a

Correlation btw the projections of 1st axes, Hosts vs Infectors. Frequencies corrected for molecular weight.

Figure 5b

Correlations between the projections on the first axes of the aminoacid swarms for hosts and infectors, before (5a) and after (5b) correction for the effect of molecular weight. Note the considerable effect of MW on the position of triptophan, glycine, and alanine.