Salta ai contenuti. | Salta alla navigazione

Strumenti personali

Geneweb

The chromosomes of Acipenseriformes

Geneweb

storione_home.jpg2.jpg

 

imm_home.jpg

Contact: Dr. Francesco Fontana   francesco.fontana@unife.it

General References

 

Birstein VJ. Hanner R. DeSalle R. 1997. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Env. Biol. Fish. 48: 127-155 Abstract

Birstein VJ. Vasilev VP. 1987. Nucleolar organizer regions, their function and polyploidy in fishes. Zhurnal Obshchei Biologii 48 (6): 729-747 Abstract

Fontana F. 2002. A cytogenetic approach to the study of taxonomy and evolution in sturgeons. J. Appl. Ichthyol. 18: 226-233. (Table I, Table II) Abstract

Fontana F. Lanfredi M. Congiu L. Leis M. Chicca M. Rossi R. 2003. Chromosomal mapping of 18S-28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome 46: 473-477 Abstract

Fontana F. Rossi R. Lanfredi M. Arlati G. Bronzi P. 1999. Chromosome banding in sturgeons. J. Appl. Ichthyol. 15: 9-11 Abstract

Vasil’ev VP. 1999. Polyploidization by reticular speciation in Acipenseriform evolution: a working hypothesis. J. Appl. Ichthyol. 15: 29–31. Abstract

Fontana F. Tagliavini J. Congiu L. 2001. Sturgeon genetics and cytogenetics: recent advancements and perspectives. Genetica 111: 359-373 Abstract

Fontana F. Zane L. Pepe A. 2007. Congiu L. Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In Fish Cytogenetics. Eds: E. Pisano, C. Ozouf-Costaz, F. Foresti & B.G. Kapoor. Science Publisher, Inc. New Hampshire, USA. pp. 385-403

Havelka M., Kašpar V., Hulák M., Flajšhans M. 2011. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool. 60: 93-103 Abstract

Lanfredi M. Congiu L. Garrido-Ramos MA. De La Herrán R. Leis M. Chicca M. Rossi R. Tagliavini J. Ruiz Rejón C. Ruiz Rejón M. Fontana F. 2001. Chromosomal location and evolution of a satellite DNA family in seven sturgeon species. Chrom. Res. 9: 47-52 Abstract

Robinson M R. Ferguson M M. 2004. Genetics of North American Acipenseriformes. In: Sturgeons and Paddlefish of North America. Edited by. LeBreton Greg TO, Beamish F William H, McKinley R. Scott. Kluwer Academic Publishers, Dordrecht, Boston. Chapter 10, pp. 217-230 Abstract

Vasiliev VP. 1985. Evolutionary karyology of fishes. Nauka Press, Moscow. 126-139. (in Russian).

Vasil’ev VP. 2009. Mechanisms of polyploid evolution in fish: Polyploidy in Sturgeons. In: Biology, Conservation and Sustainable Development of Sturgeons. Eds: R. Carmona, A. Domezain, M. García-Gallego, J. A. Hernando, F. Rodríguez, M. Ruiz-Rejón. Springer Science + Business Media BV: pp. 97-117 Abstract

Nikolsky G. 1976. The interrelation between variability of characters, effectiveness of energy utilisation, and karyotype structure in fishes. Evolution 30: 180-185 Abstract

Vasiliev VP. Sokolov L. 1980. The method for studying of chondrostean karyotypes. Tsitologia (Leningrad) 22, 1106-1109 (in russian) Abstract

Vasil’eva ED. Vasil’ev VP. Shedko SV. Novomodny GV. 2009. The Revision of the validity of genus Huso (Acipenseridae) based on recent morphological and genetic data with particular reference to the kaluga H. dauricus. Journal of Ichthyology, 49(10): 861–867. Abstract

Zeng L. Xiao Y. Li X. Zhou Y. Fan Y. 2009. Establishment and characterization of a cell line derived from fin of paddlefish, Polyodon spathula Walbaum. 6th International Symposium on Sturgeon. October 25-31, Wuhan, Hubei Province, China. Posters A58. Abstract


Genome Size

 

Mirsky AE. Ris H. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 34: 451-462.
(A. sturio Cv 3.2)

Vialli M. 1957. Volume et contenu en ADN par noyau. Exp.Cell Res. Suppl. 4: 284-293.
(A. naccarii Cv 4.24; A. sturio Cv 3.95)

Kafiani KA. RI Tatarskaia. Kanopkaite SM. 1958. Phosphorus metabolism in the embryonic development of sturgeon. Biochemistry 23: 389-399.
(A. stellatus Cv 4.70)

Ohno S. Muramoto J. Stenius C. Christian L. Kitterell WA. 1969. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26: 35-40 Abstract
(S. platorynchus Cv 3.60)

Fontana F. 1976. Nuclear DNA content and cytometric of erythrocytes of Huso huso L., Acipenser sturio L. and Acipenser naccarii Bonaparte. Caryologia 29: 127-138 Abstract
(H. huso Cv 3.60; A. naccarii Cv 6.30; A. sturio Cv 3.58)

Hinegardner R. 1976. The cellular DNA content of sharks, rays and some other fishes. Comp. Biochem. Physiol., B. 55: 367-370.
(A. transmontanus Cv 10.60)

Tiersch TR. Chandler RW. Wachtel SS. Elias S. 1989. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10: 706-710 Abstract.
(P. spathula Cv 3.90)

Blacklidge KH. Bidwell CA. 1993. Three ploidy levels indicated by genome quantification in Acipenseriformes of North America. J. Hered. 84: 427-430 Abstract
(A. brevirostrum C.v. 13.07; A. fulvescens C.v. 8.90; A. medirostris Cv 8.82; A. oxyrhynchus Cv 4.55; A. transmontanus Cv 9.46; S. platorynchus Cv 4.73; P. spathula Cv 4.89)

Birstein VJ. Poletaev AI. Goncharov BF. 1993. The DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry, 14(4): 337-383 Abstract
(H. dauricus Cv 3.77; H.huso Cv 3.43; A. baeri Cv 8.30; A. gueldenstaedtii Cv 7.87; A. medirostris Cv 14.33; A. nudiventris Cv 3.96; A. ruthenus Cv 3.74; A. stellatus Cv 3.74; P.kaufmanni Cv 3.47; P. spathula Cv 3.17)

Song S. Liu H. Sun D. Fan Z. 1997. The karyotype and cellular DNA contents of Amur sturgeon (Acipenser schrencki). Hereditas (Beijing). 19: 5-8 (in Chinese). Abstract
(A. schrenckii Cv 11.73)

Zhang SM. Yang Y. Deng H. Wei QW. Wu QJ. 1999. Genome size and ploidy characters of several species of sturgeons and paddlefishes with comments on cellular evolution of Acipenseriformes. Acta Zoologica Sinica, 45(2): 200-206 Abstract
(P. gladius Cv 4.11; A. dabryanus Cv 8.26; A. sinensis Cv 9.07; A. schrenckii Cv 6.07; P. spathula Cv 3.96)

Hardie DC. Hebert PDN. 2003. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46: 683-706 Abstract
(A. brevirostrum Cv 13.78; A. oxyrhynchus Cv 4.38)

Hardie DC. Hebert PDN. 2004. Genome-size evolution in fishes. Canadian Journal of Fisheries and Aquatic Sciences 61: 1636-1646. Abstract
(A. brevirostrum Cv 13.78; A. oxyrhynchus Cv 4.38)

Yin HB. Sun ZW. Sun DJ. 2004. Comparative study on DNA contents of five cultured fishes of Acipenseridae and Huso. Journal of Shanghai Fisheries University 13, 111–114. Abstract
(A. gueldenstaedtii Cv 12.24; A.baeri Cv 11.60; A. schrenckii Cv 11-59; A.ruthenus Cv 6.06; H. dauricus Cv 4.77)

Yin HB. Sun ZW. Sun DJ. Qiu LQ. 2006. Cytogenetic analysis of Acipenser gueldenstaedti Brandt. Journal of Fisheries of China 2006-02. Abstract
(A. gueldenstaedtii Cv 12.24)

Zhou H. Fujimoto T. Adachi S. Yamaha E. Arai K. 2009. Genome size variation estimated by nuclear DNA content Flow Cytometry in ten sturgeon species and several interspecific hybrids reared in Japan. 6th International Symposium on Sturgeon. October 25-31, Wuhan, Hubei Province, China. Abstracts Oral Presentations 61-62.
(A. baeri Cv 7.8-8.0; A.fulvescens Cv 7.9-8.0; A. gueldenstaedtii Cv 4.2/8; A. medirostris mikadoi Cv 8.0-9.1; A. ruthenus Cv 3.8-3-9; A. schrenckii Cv. 7.9-8.2; A. stellatus Cv 3.5-4.0; A. transmontanus Cv 8.5-9.0; H. dauricus Cv 8.3-8.4; P. spathula Cv 3.5) Abstract

Zhou H. Fujimoto T. Adachi S. Yamaha E. Arai K. 2011. Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J. Appl. Ichthyol. 27: 484-491-
(A. mikadoi Cv 8.2; H. dauricus Cv 8,3) Abstract

Zhou H. Fujimoto T. Adachi S. Abe, S. Yamaha E. Arai K. 2013. Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. Abstract

 

Zhou H. Fujimoto T. Adachi S. Abe, S. Yamaha E. Arai K. 2013. Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J. Appl. Ichthyol. 29: 51-55 (A. mikadoi Cv 8.82) Abstract

Acipenser baerii

2n ~ 209
Burtzev JA. Nikoljukin NJ. Serebryakova EV. Karyotype presented in 1973 at the First European Ichthyological Congress, held in Sarajevo by the the Yugoslav Society of Ichthyology (personal communication to Francesco Fontana)
babur73_s.jpg
2n=249±5; 120 mc 308±4 FN
Vasil’ yev VP. Sokolov LI. Serebryakova EV. 1980. Karyotype of the Siberian sturgeon Acipenser baeri Brandt from the Lena River and some questions of the acipenserid karyotypic evolution. Vopr Ikhtiol 23: 814-822 Abstract
bavas80_s.jpg
Vasiliev VP. 1985. Evolutionary karyology of fishes. Nauka Press, Moscow. 126-139. (in Russian). bavas85_s.jpg
2n=246±8; 98 m+sm, 150 a+mc, 346 FN
Fontana F. 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 37: 888-892 Abstract
bafon94_s.jpg

2n=246±10
Fontana F. Rossi R. Lanfredi M. Arlati G. Bronzi P. 1997. Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50: 91-95 Abstract

Fontana F. Lanfredi M. Chicca M. Aiello V. Rossi R. 1998. Localization of the repetitive telomeric sequence (TTAGGG)n in four sturgeon species. Chrom. Res. 6: 303-306 Abstract

2n=229-240
Dorota FB, Jankun M, Woznicki P. 2006 Chromosome number and erythrocyte nuclei length in triploid Siberian sturgeon Acipenser baeri Brandt. Caryologia 59: 319-321 Abstract

Havelka M. Hulák M. Ráb P. Rábová M. Lieckfeldt D. Ludwig A. Rodina M. Gela D. Pšenička M. Bytyutskyy D. Flajšhans M. 2014. Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genetics, 15 Abstract

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser brevirostrum


372 (254-372); 178 m+sm, 194 a+mc, 550 FN
Kim DS. Nam YK. Noh JK. Park CH. Chapman FA. 2005. Karyotype of North American shortnose sturgeon Acipenser brevirostrum with the highest chromosome number in the Acipenseriformes. Ichthyol. Res. 52: 94–97 Abstract
brkim05_s.jpg
Flynn SR, Matsuoka M, Reith M, Martin-Robichaud DJ, Benfey TJ 2006. Gynogenesis and sex determination in shortnose sturgeon, Acipenser brevirostrum Lesuere. Aquaculture 253: 721-727 Abstract
372±6; 178 m+sm, 196 a+mc, 468 FN
Fontana F, Congiu L, Mudrak VA, Quattro JM, Smith TIJ, Ware K, Doroshov SI. 2008- Evidence of hexaploid karyotype in shortnose sturgeon- Genome 51(2): 113-119. DOI 10.1139/G07-112 Abstract (Table 1, Table 2)
brfon08_g.jpg

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser fulvescens

2n=262±6; 134 m+sm, 70 t+a, ~60 mc, ~468 FN
Fontana F. Bruch RM. Binkowski FP. Lanfredi M. Chicca M. Beltrami N. Congiu L. 2004. Karyotype characterization of the lake sturgeon, Acipenser fulvescens (Rafinesque, 1817) by chromosome banding and fluorescent in situ hybridization. Genome 47: 742-746. Abstrac
fufon04_s.jpg

 

m = metacentric; sm = submetacentric; t = telocentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser gueldenstaedtii

2n ~ 187
Burtzev JA. Nikoljukin NJ. Serebryakova EV. Karyotype presented in 1973 at the First European Ichthyological Congress, held in Sarajevo by the the Yugoslav Society of Ichthyology (personal communication to Francesco Fontana)
2n=250±8; 92±4 m+sm, 150 st+a+mc, 342±12 FN
Vasiliev VP. 1985. Evolutionary karyology of fishes. Nauka Press, Moscow. 126-139. (in Russian).
gubur73_s.jpg

2n=250±8, 92±4 m+sm, (250±8 + 92)±4 FN
Birstein VJ. Vasiliev VP. 1987. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pishes): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 73: 3-12 Abstract

guvas85_s.jpg
2n=249.9±2.2; 97.6±0.4 m, 152.2±2.6 a, 346.1±2.3 FN
Arefjev VA. Nikolaev AI. 1991. Cytological analysis of the reciprocal hybrids between low- and high-chromosome acipenserids, the great sturgeon, Huso huso (L.), and the Russian sturgeon, Acipenser gueldenstaedti Brandt. Cytologia 56: 495-502 Abstract

2n=250±; 98 m+sm, 152 a+mc, 348
Arefjev VA. 1989. Study of karyotype of the sturgeon Acipenser gueldenstaedtii Brandt (Chondrostei). Tsitologia i Genetika 23:7-10 (in Russian) Abstract.

n=256±8
Fontana F. Lanfredi M. Rossi R. Bronzi P. Arlati G. 1995. Established cell lines from three sturgeon species. Sturg. Quart. 3(4): 6-7

2n=258±4; 106 m+sm, 152 a, 364±8 FN
Fontana F. Lanfredi M. Rossi R. Bronzi P. Arlati G. 1996 Karyotypic characterization of Acipenser gueldenstaedti with C-, AgNO3 and fluorescence banding techniques. Ital. J. Zool. 63: 113-118 Abstract
gufon96_s.jpg
Fontana F. Lanfredi M. Chicca M. Aiello V. Rossi R. 1998. Localization of the repetitive telomeric sequence (TTAGGG)n in four sturgeon species. Chrom. Res. 6: 303-306 Abstract

2n=236±2; 96 m+sm, 140 st+a+mc, 332 FN
YIN Hong-bin. SUN Zhong-wu. SUN Da-jiang. QIU Ling-quan. 2006. Cytogenetic analysis of Acipenser gueldenstaedti Brandt. Journal of Fisheries of China 2006-02. Abstract

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser medirostris


2n=249±8
Van Eenennaam AL. Murray JD. Medrano JF. 1999. Karyotype of the American green sturgeon. Transactions of the American Fisheries Society 128: 175-177 Abstract
mevan99_s.jpg

Acipenser mikadoi

2n=264
Vasil’ev VP. Vasil’eva ED. Shedko SV. Novomodny GV. 2008. Karyotypes of the kaluga Huso dauricus and Sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces). In: Bioraznoobrazie I dinamika genofondov. Materialy otchetnoi konferentsii. Moscow: RAN. P. 19-21
mivas08_s.jpg
2n=247±33
Vishnyakova KS. Mugue NS. Zelenina DA. Mikodina EV. Kovaleva OA. Madan GV. Yegorov YE. 2008. Cell culture and karyotype of Sakhalin sturgeon Acipenser mikadoi. Biologicheskie membrany. 25:420-433 Abstract
cario_mik.jpg
2n=262±4; 80 m+sm, 342±4 FN
Vasil’ev VP. Vasil’eva ED. Shedko SV. Novomodny GV. 2009. Ploidy levels in the kaluga Huso dauricus and sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces). Doklady Biological Sciences, 426: 228-231
2n=262±4; 80 m+sm, 342±4 FN
Vasil’ev VP. Vasil’eva ED. Shedko SV. Novomodny GV. 2010. How many times has polyploidization
occurred during acipenserid evolution? New data on the karyotypes of sturgeons (Acipenseridae, Actinopterygii) from the Russian far east. Journal of Ichthyology, 50: 950-959. Abstract
Vasil’eva ED. Vasil’ev VP. Shedko SV. Novomodny GV. 2009. The validation of specific status of the Sakhalin sturgeon Acipenser mikadoi (Acipenseridae) in the light of recent genetic and morphological data. Journal of Ichthyology, 49(10): 868–873. Abstract

2n=248
Zelenina DA. Yegorov JE. Vishnyakova KS. Galina A. Delone GA. Mugue NS. Mikodina EV. 2009. Enigmatic Sakhalin Sturgeon (Acipenser mikadoi, Hilgendorf, 1892): ploidy, cytogenetics, molecular phylogeny. 12th Congress of the European Society for Evolutionary Biology Torino, Italy, August 24 – 29 Abstract


2n=230-272; 80 m+sm, 188 a+mc,
Zhou H. Fujimoto T. Adachi S. Abe, S. Yamaha E. Arai K. 2013. Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J. Appl. Ichthyol. 29: 51-55 Abstract

Acipenser naccarii

nageog.jpg

 

2n=239±7; 150 m+sm, 88 a+mc, 388 FN
Fontana F. Colombo G. 1974. The chromosomes of Italian sturgeons. Experientia 30: 739-742 Abstract

2n=246±8
Fontana F. 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 37: 888-892 Abstract

2n=246±8
Fontana F. Lanfredi M. Rossi R. Bronzi P. Arlati G. 1995. Established cell lines from three sturgeon species. Sturg. Quart. 3(4): 6-7

2n=241±3; 88±2 m, 153 a+mc, 329±4 FN  
Arlati G. Belysheva LA. Kaidanova TI. 1995. Kariological analysis of Acipenser naccarii (Bonaparte). Proc. Intern. Sturg. Symp., VNIRO Publ. 119-123 Abstract
nacc_arlati_001.jpg
Fontana F. Lanfredi M. Chicca M. Aiello V. Rossi R. 1998. Localization of the repetitive telomeric sequence (TTAGGG)n in four sturgeon species. Chrom. Res. 6: 303-306 Abstract
2n=248±4; 174 m+sm, 2 st, 72 a+mc, 424 FN  
Fontana F. Lanfredi M. Chicca M. Congiu L. Tagliavini J. Rossi R. 1999. Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes Acipenseriformes). Genome 42: 1008-1012 Abstract
nacc_fo99.jpg
Congiu L., Pujolar JM. Forlani A. Cenadelli S. Dupanloup I. Barbisan F. Galli A. Fontana F. 2011. Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (Acipenser naccarii). PLoS ONE 6(3): e18249.  doi:10.1371/journal.pone.0018249 Abstract

 

m = metacentric; sm = submetacentric; st = subtelocentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser nudiventris

2n=118±3; 54±4 m, 4 a, 60±3 mc, 172±4 FN
Arefjev VA. 1983. Polykaryogrammic analysis of ship, Acipenser nudiventris Lovetsky (Acipenseridae, Chondrostei). Vopr. Ikhtiol. 23: 209-218 Abstract
nuare83_s.jpg
2n=118±2; 54 m+sm, 64 a+mc, 172 FN
Sokolov LI. Vasiliev V. 1989 Acipenser nudiventris Lovetsky, 1928 In: The freshwater fishes of Europe. Vol 1/II General introduction to fishes Acipenseriformes, Holcik J. Ed., Wiesbaden: 206-226
nusok_s.jpg
2n=116±4; 60±4 m+sm+st, 56mc, 120±4 FN
Nowruzfashkhami MR. Safaiian S. Bahmani M. Chubian F. 2006. Karyotype analysis in ship sturgeon Acipenser nudiventris in the south Caspian Sea using leukocyte culture . J. Appl. Ichthyol. 22 (Suppl. 1): 97-98 Abstract
nunow06_s.jpg

 

m = metacentric; sm = submetacentric; st = subtelocentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser oxyrinchus


2n=99-112
Li MF. Marrayatt V. Annand C. Odense P. 1985. Fish cell culture: two newly developed cell lines from Atlantic sturgeon (Acipenser oxyrhynchus) and guppy (Poecilia reticulata). Can. J. Zool. 63: 2867-2874 Abstract

2n=121±3; 78 m+sm, 44a+mc, 200 FN
Fontana F, Lanfredi M, Kirschbaum F, Garrido-Ramos MA, Robles F, Forlani A, Congiu L. 2008. Comparison of karyotypes of Acipenser oxyrinchus and A. sturio by chromosome banding and fluorescent in situ hybridisation. Genetica 132: 281-286. DOI 10.1007/s10709-007-9171-4 Abstract

oxfon08_s.jpg

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser persicus


2n>200
Nowruzfashkhami M. R. 1996. On the Karyotypes of Acipenser persicus, A. stellatus and Huso huso from the Iranian Waters of the Caspian Sea. Sturg. Quat. 4 (3): 7.

258±4; 134 m+sm, 128 a+mc, 386 NF
Nowruzfashkhami M. R., Pourkazemi M and Baradarannoveiri S. 2000. Chromosome study of persian sturgeon Acipenser persicus B. Cytologia 65: 197-202 Abstract

penow00_s.jpg
Nowruzfashkhami MR. Kazemi B, Jahani M, Pourkazemi M, Wazeeri-Nasab H, Azizzadeh L. 2009. Chromosomal location of satellite DNA family in Acipenser persicus. 6th International Symposium on Sturgeon. October 25-31, Wuhan, Hubei Province, China. Book of Abstracts, Oral Presentations 77-78. Abstract

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser ruthenus

2n=60±2; 40 m+sm, 20 a, 100 FN Only macrochromosomes were counted
Serebryakova EV. 1972. Some data on the chromosome complexes in Acipenseridae.. In: Genetics, Selection, and Hybridization of Fish. (Ed. B.I. Cherfas). Translated from Russian by Israel Program for Scientific Translations. Keter Press Binding: Wiener Bindery Ltd. Jerusalem. pp. 98-106
ruser72_s.jpg

2n=116±4; 66 m+sm, 40 a+mc, 172 FN
Fontana F. Jankovic D. Zivkovic S. 1975 Somatic chromosome of Acipenser ruthenus L.. Arch. biol. nauka, Beograd 27: 33-35 Abstract

rufon75_s.jpg

2n=109-112; 159-165 NF
Burtzev JA. Nikoljukin NJ. Serebryakova EV. 1976. Karyology of the Acipenseridae family in relation to the hybridization and taxonomy problems. Acta Biol. Jugosl. Ser. Ichthyologia 8: 27-34 Abstract

2n=118±2; 82 m+sm, 36 a+mc, 200 FN
Vasiliev VP. 1985. Evolutionary karyology of fishes. Nauka Press, Moscow. 126-139. (in Russian).
ruvas85_s.jpg
2n=118±4; 58 m+sm, 4 a, 56±4 mc, 176±4 FN
Rab P. 1986. A note on the karyotype on the sterlet, Acipenser ruthenus (Pishes, Acipenseridae). Folia Zool. 35(1): 73-78 Abstract
rurab86_s.jpg
2n=118±2; 82±4 m+sm, 118±2 + 82±4 FN
Birstein VJ. Vasiliev VP. 1987. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pishes): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 73: 3-12 Abstract
rubir87_s.jpg
2n=117.3±0.6; 57.2±0.3 m, 60.1±0.7 a, 174.6±0.7 FN
Arefjev VA. 1989. Karyotype variability in successive generations after hybridization between the great sturgeon, Huso huso (L.), and the sterlet, Acipenser ruthenus. L. J. Fish Biol. 35: 819-828 Abstract

2n=118±4
Fontana F. 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 37: 888-892 Abstract

2n=118±9
Fontana F. Lanfredi M. Rossi R. Bronzi P. Arlati G. 1995. Established cell lines from three sturgeon species. Sturg. Quart. 3(4): 6-7

2n=118±4; 58 m+sm, 4a, 52-60 mc
Ráb P. Arefjev VA. Rábova M. 1996. C-banded karyotype of the sterlet, Acipenser ruthenus, from the Danube River. Sturg. Quart., 4(4): 10-12 Abstract
rurab96_s.jpg
Fontana F. Lanfredi M. Chicca M. Aiello V. Rossi R. 1998. Localization of the repetitive telomeric sequence(TTAGGG)n in four sturgeon species. Chrom. Res. 6: 303-306 Abstract
2n=118±2; 58 m+sm, 4a, 56±2mc
Suciu R. Ene C. 1998. A note on the karyotype of the sterlet Acipenser ruthenus Linnaeus, 1758 (Pisces, Acipenseridae) from the romanian stretch of Danube River. Extended abstracts of contributions presented at the International Symposium Aquarom 98/Galati: 318-321 Abstract
rusuc98_s.jpg
2n=118±4
Fontana F. Lanfredi M. Chicca M. Congiu L. Tagliavini J. Rossi R. 1999. Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes Acipenseriformes). Genome 42: 1008-1012 Abstract

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes FN = fondamental number

Acipenser sinensis

2n=264±; 78 m, 20 sm, 166 a+mc, 362 FN
Yu X. Zhou T. Li K. Li Y. and Zhou M. 1987. On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China. Genetica 72: 225-236 Abstract
siyux87_s.jpg
2n=156-276
Ye XH, Liu HQ, Yu XM, Zhang YB, Chang JB.1999. Preliminary research on tissue culture of Chinese sturgeon. Acta Hydrobiology Sinica 23, 566-571. (In Chinese) Abstract

2n=264 (mode)
Zhou GZ. Gui L. Li ZQ. Yuan XP. Zhang QY. 2008. Establishment of a Chinese sturgeon Acipenser sinensis tail-fin cell line and its susceptibility to frog iridovirus. J. Fish Biol.73: 2058-2067 Abstract

sizho08_s.jpg

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser schrenckii


2n=240
Vasiliev VP. Sokolov LI. Serebryakova EV. 1980. Karyotype of the Siberian sturgeon Acipenser baeri Brandt from the Lena River and some questions of the acipenserid karyotypic evolution. Vopr. Ikhtiol. 23: 814-822 Abstract
2n=238±8; 84 m+sm, 28 st, 120 a+mc, 328 FN
Song, S. Liu H. Sun D. Fan Z. 1997. The karyotype and cellular DNA contents of Amur sturgeon (Acipenser schrencki). Hereditas (Beijing). 19: 5-8 (in Chinese). Abstract
scson97_s.jpg

2n=266±4; 92 m+sm, 358±4 FN
Vasil’ev VP. Vasil’eva ED. Shedko SV. Novomodny GV. 2010. How many times has polyploidization occurred during acipenserid evolution? New data on the karyotypes of sturgeons (Acipenseridae, Actinopterygii) from the Russian far east. Journal of Ichthyology, 50: 950-959. Abstract

copy_of_schrencki001.jpg

 



m = metacentric; sm = submetacentric; st = subtelocentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser sturio

stugeogr.jpg


2n=116±4; 70 m+sm, 42a+mc, 182 FN
Fontana F. Colombo G. 1974. The chromosomes of Italian sturgeons. Experientia 30: 739-742 Abstract

stufon74_s.jpg
2n=121±3; 78 m+sm, 43a+mc, 198 FN
Tagliavini J. Williot P. Congiu L. Chicca M. Lanfredi M. Rossi R. Fontana F. 1999. Molecular cytogenetic analysis of the karyotype of the European Atlantic sturgeon, Acipenser sturio. Heredity 83: 520-525 Abstract
stutag99_s.jpg

Fontana F. 2011. Cytogenetics as a tool for an exploration of A. sturio status within sturgeons. In Biology and Conservation of the European Sturgeon Acipenser sturio L. 1758. Eds P. Williot, E. Rochard, N. Desse-Berset, F. Kirschbaum & J. Gessner. Springer-Verlag Berlin Heidelberg. pp. 13-21 Abstract

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Acipenser stellatus

 

2n=109-112; 159-165 NF
Burtzev JA. Nikoljukin NJ. Serebryakova EV. 1976. Karyology of the Acipenseridae family in relation to the hybridization and taxonomy problems. Acta Biol. Jugosl. Ser. Ichthyologia 8: 27-34 Abstract
2n=118±2; 70 m+sm, 48 a+mc, 188 FN
Vasiliev VP. 1985. Evolutionary karyology of fishes. Nauka Press, Moscow. 126-139. (in Russian).
stevas85_s.jpg
2n=118±2; 70±4 m+sm, (118±2)+(70±4) FN
Birstein VJ. Vasiliev VP. 1987. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pishes): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 73: 3-12 Abstract

2n=118±1, 356 FN
Nowruz Fashkhami M. R. 1996. On the karyotypes of Acipenser persicus, A. stellatus and Huso huso from the Iranian waters of the Caspian Sea. Sturg. Quat. 4 (3): 7.

2n=118±2; 186±2 FN
Suciu R. Ene C. 1996. Karyological study of the stellate sturgeon, Acipenser stellatus, from the Danube River. Sturg. Quart. 4(3): 14-15
stesuc96_s.jpg

2n=114
Nowruz Fashkhami MR. Khosroshahi M. 1999. Karyotype study on stellate and great sturgeon by leukocyte culture. J. Appl. Ichthyol. 15: 283. Abstract

2n=146±6; 72 m+sm, 74 a+mc, 218 FN
Chicca M. Suciu R. Ene C. Lanfredi M. Congiu L. Leis M. Tagliavini J. Rossi R. Fontana F. 2002. Karyotype characterization of the stellate sturgeon, Acipenser stellatus, by chromosome banding and fluorescent in situ hybridization. J. Appl. Ichthyol. 18: 298-300 Abstract

stechi02_s.jpg

 

m = metacentric; sm = submetacentric chromosomes; FN = fondamental number

Acipenser transmontanus


 

2n=237-243
Hedrick RP. McDowell TS. Rosemarck R. Aronstein D. Lannan C.N. 1991. Two cell lines from white sturgeon. Trans. Am. Fish Soc. 120: 528-534 Abstract
2n=248±8; 104 m+sm, 144 a+mc, 352 FN
Fontana F. 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 37: 888-892 Abstract
trfon94_s.jpg
2n=226-288
Sola L. Cordisco C. Bressanello S. Cataudella S. 1994. Cytogenetic characterization of the North American white sturgeon Acipenser transmontanus (Pisces, Acipenseridae). In: Proc. VIII Congr. SEI: 64-65 Abstract

2n=246±10
Fontana F. Rossi R. Lanfredi M. Arlati G. Bronzi P. 1997. Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50: 91-95 Abstract

Vaneenennaam AL. Murray JD. Medrano JF. 1998. Synaptonemal complex analysis in spermatocytes of white sturgeon, Acipenser transmontanus Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number. Genome 41: 51-61 Abstract trvan98a_s.jpg
2n=271±2.5; 132 m+sm, 44 a, 98 mc, 306 FN
Vaneenennaam AL. Murray JD. Medrano JF. 1998. Mitotic analysis of the North American white sturgeon, Acipenser transmontanus Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number. Genome 41:266-271 Abstract
trvan98b_s.jpg
2n=256±6
Wang G. Lapatra S. Zeng L. Zhao Z. Lu Y. 2003. Establishment, growth, cryopreservation and species of origin identification of three cell lines from white sturgeon, Acipenser transmontanus. Meth. Cell. Sci. 25: 211–220 Abstract
Gille DA.Famula TR.May BP.Schreier AD. 2015. Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus). Aquaculture, 435: 467-474 Abstract

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Polyodon spathula


2n=120; 32 m, 8 sm, 8 a, 72 mc, 160 FN
Dingerkus G. Howell WM. 1976. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 194: 842 844 Abstract
poldin_s.jpg

2n=120; 48 m+sm, 72 mc
Symonová R. Flajšhans M. Gela D. Pelikánová Š. Rábová M. Ráb P. 2010. Tetraploidy in paddlefish, Polyodon spathula? - 34 years later. 19th International Colloquium on animal cytogenetics and gene mapping. Chromosome Research 18:754-754 Abstract

 

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Scaphirhynchus platorynchus


2n=112; 50 m, 14 a, 48 mc, 162 FN
Ohno S. Muramoto J. Stenius C. Christian L. Kitterell WA. 1969. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26: 35-40 Abstract
scaphohn_s.jpg

 

m = metacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Huso dauricus

 

2n=60 Only macrochromosomes were counted
Burtzev JA. Nikoljukin NJ. Serebryakova EV. 1973 Kariology of family Acipenseridae in connection with questions of hybridization and taxonomy. First European Ichthyological Congress. Sarajevo. Yugoslavia
2n=270
Vasil’ev VP. Vasil’eva ED. Shedko SV. Novomodny GV. 2008. Karyotypes of the kaluga Huso dauricus and Sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces). In: Bioraznoobrazie I dinamika genofondov. Materialy otchetnoi konferentsii. Moscow: RAN. P. 19-21
davas08_s.jpg

2n=268±4; 100 m+sm, 368±4 FN

Vasil’ev VP. Vasil’eva ED. Shedko SV. Novomodny GV. 2009. Ploidy levels in the kaluga Huso dauricus and sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces). Doklady Biological Sciences, 426: 228-231

davas08_s.jpg

2n=268±4; 100 m+sm, 368±4 FN
Vasil’ev VP. Vasil’eva ED. Shedko SV. Novomodny GV. 2010. How many times has polyploidization occurred during acipenserid evolution? New data on the karyotypes of sturgeons (Acipenseridae, Actinopterygii) from the Russian far east. Journal of Ichthyology, 50: 950-959. Abstract

Huso huso

hugeog.jpg

 

2n=60±2; 38 m+sm, 22 a, 98 FN Only macrochromosomes were counted
Serebryakova EV. 1972. Some data on the chromosome complexes in Acipenseridae.. In: Genetics, Selection, and Hybridization of Fish. (Ed. B.I. Cherfas). Translated from Russian by Israel Program for Scientific Translations. Keter Press Binding: Wiener Bindery Ltd. Jerusalem. pp. 98-106
huser72_s.jpg
2n=116±4; 68 m+sm, 46 a, 182 FN
Fontana F. Colombo G. 1974. The chromosomes of Italian sturgeons. Experientia 30: 739-742 Abstract
hufon74_s.jpg
2n=109-112; 159-165 NF
Burtzev JA. Nikoljukin NJ. Serebryakova EV. 1976. Karyology of the Acipenseridae family in relation to the hybridization and taxonomy problems. Acta Biol. Jugosl. Ser. Ichthyologia 8: 27-34 Abstract
hubur76_s.jpg

 

2n=118±3; 62±4 m, 6 a, 50±3 mc, 180±4 FN
Serebryakova EV. Arefjev VA. Vasiliev VP. Sokolov L.I. 1983. The study of the karyotype of giant sturgeon, Huso huso (L.) (Acipenseridae , Chondrostei) with reference to their systematic position. In Genetics of Commercial Fishes and Aquaculture Objects. pp 63-69, Moscow Abstract
huser83_s.jpg
Arefjev VA, Panov AD. 1984. Some problems of the chromosome distribution in the metaphase plates of great sturgeon, Huso huso (L) Genetika 20 (8): 1374-1379 1984 Abstract
2n=118±2; 60±2 m+sm, (118±2)+(60±2) FN
Birstein VJ. Vasiliev VP. 1987. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pishes): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 73: 3-12 Abstract
hubir87_s.jpg
2n=118.6±0.5; 61.5±0.3 m, 57.9±0.5 a, (177.9±0.6) FN
Arefjev VA. 1989. Karyotype variability in successive generations after hybridization between the great sturgeon, Huso huso (L.), and the sterlet, Acipenser ruthenus. L. J. Fish Biol. 35: 819-828 Abstract
2n=117.6±0.4; 61.2±0.2 m, 57.6±0.6 a, (178.2±0.5) FN
Arefjev VA. Nikolaev AI. 1991. Cytological analysis of the reciprocal hybrids between low- and high-chromosome acipenserids, the great sturgeon, Huso huso (L.), and the Russian sturgeon, Acipenser gueldenstaedti Brandt. Cytologia 56: 495-502 Abstract
huare91_s.jpg
Arefjev VA. 1993. NOR-banding studies of Acipenser baeri karyotype. Abstract Bulletin Internatrional Symposium on sturgeons Moscow, September 6-11, 1993. VNIRO, Moscow-Kostroma-Moscow, Russia. pp 30-31 Abstract

2n=116±1, 356 FN
Nowruz Fashkhami M. R. 1996. On the karyotypes of Acipenser persicus, A. stellatus and Huso huso from the Iranian waters of the Caspian Sea. Sturg. Quat. 4 (3): 7.

2n=120±8
Fontana F. Rossi R. Lanfredi M. Arlati G. Bronzi P. 1997. Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50: 91-95 Abstract
2n=118±2; 84 m+sm, 34 a+mc, 202 FN
Fontana F. Tagliavini J. Congiu L. Lanfredi M. Chicca M. Laurenti C. Rossi R. 1998 - Karyotypic characterization of the great sturgeon, Huso huso, by multiple staining techniques and fluorescent in situ hybridization. Mar. Biol. 132: 495-501 Abstract
hufon98_s.jpg
2n=117
Nowruz Fashkhami MR. Khosroshahi M. 1999. Karyotype study on stellate and great sturgeon by leukocyte culture. J. Appl. Ichthyol. 15: 283. Abstract

 

Hybrids

Nikoljukin N.I. 1966. Some questions of cytogenetics, hybridization and systematics of the Acipenseridae. Genetika (USSR), 5: 25-27 Abstract

Arefjev, V.A. 1989. Increase of karyotypic variability iomn sturgeon hybrids. 6 p. In: Book of Abstracts, Premier Colloque International Sur L`esturgeon, Bordeaux, 3-6. October 1989. Published by Cemagref, 98 pp Abstract

Arefjev VA. 1999. Cytogenetics of interploid hybridization of sturgeons. J. Appl. Ichthyol. 15: 277 Abstract

Flajšhans M. Vajcová V. 2000. Odd ploidy levels in sturgeon suggest a backcross of interspecific hexaploid sturgeon hybrids to evolutionary tetraploid and/or octaploid parental species. Folia Zool. 49(2): 133-138 Abstract

Ene AC. Suciu R. 2001. Karyological investigation in natural hybrids of sturgeons of the lower Danube River. 10th European Congress of Ichthyology. Prague. (P 34) Abstract

Birstein VJ. 2002. Sturgeon Species and Hybrids: Can Hybrids Produce Caviar? Environ. Policy Law. 32: 210- 214

Symonová R. Flajšhans M. Gela D. Rodina M. Pelikanova Š. Rabova M. Rab P. Sturgeons are pretty polyploid: hybrid and ploidy diversity in sturgeons. International meeting on the genetics of polyploids. Lisbon, Portugal 11 - 12 november 2010 Abstract

2n=60±2; 40 m+sm, 20 a, 100 FN Only macrochromosomes were counted
Serebryakova EV. 1972. Some data on the chromosome complexes in Acipenseridae. In: Genetics, Selection, and Hybridization of Fish. (Ed. B.I. Cherfas). Translated from Russian by Israel Program for Scientific Translations. Keter Press Binding: Wiener Bindery Ltd. Jerusalem. pp. 98-106
hybeser72_s.jpg
2n=60
Burtzev IA. Serebryakova EV. 1973. A hybrid beluga x sterlet (Huso huso (L.) x Acipenser ruthenus L., Pisces): karyology, gametogenesis and potential status. Genetics 74: s35

2n=117.4±1.08; 57.7±0.37 m+sm, 58.9±0.97 a, 174.3±1.41 FN
Arefjev VA. 1989. Karyotype variability in successive generations after hybridization between the great sturgeon, Huso huso (L.), and the sterlet, Acipenser ruthenus. L. J. Fish Biol. 35: 819-828 Abstract

2n=119
Ojima Y. Nakanishi Y. Takay A. 1986. Chromosomal studies of cultured cells from the hybrids between Huso huso and Acipenser ruthenus. Proc. Japan Acad. 62B(3): 87-90 Abstract
hybeoji86_s.jpg
2n=116-118
Arefjev VA. Nikolaev AI. 1993. Induced polyploidy in sturgeons: back to the problem in Russia. 31-32 pp. International Symposium on Sturgeons, Abstract Bulletin. September 6-11, 1993, Moscow-Kostroma-Moscow, Russia. Abstract

Omoto N, Maebayashi M, Adachi S, Arai K, Yamauchi K. 2005. Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female x Acipenser ruthenus male) Aquaculture 245: 39-47 Abstract

2n=167.2±1.6; 74±0.4 m+sm, 93.6±1.4 a, 241.3±1.9 FN
Arefjev VA. Nikolaev AI. 1991. Cytological analysis of the reciprocal hybrids between low- and high-chromosome acipenserids, the great sturgeon, Huso huso (L.), and the Russian sturgeon, Acipenser gueldenstaedti Brandt. Cytologia 56: 495-502 Abstract
hygxhare91_s.jpg

2n=169.4±2.9; 74.2±0.7 m+sm, 95.3±2.4 a, 243.6±3.5 FN
Arefjev VA. Nikolaev AI. 1991. Cytological analysis of the reciprocal hybrids between low- and high-chromosome acipenserids, the great sturgeon, Huso huso (L.), and the Russian sturgeon, Acipenser gueldenstaedti Brandt. Cytologia 56: 495-502 Abstract
hyhxgare91_s.jpg

2n=177.1±2.2; 78 m+sm, 16 a, 88 mc 260 FN
Gorshkova G. Gorshkov S. Gordin H. Knibb W. 1996 Karyological study in hybrids of beluga Huso huso (L.) and the russian sturgeon Acipenser guldenstaedti Brandt. Isr. J. Aquacult-Bamin. 48: 35-39 Abstract

hyhxggor91_s.jpg

Fopp-Bayat D, Woznicki P. 2006. Verification of ploidy level in sturgeon larvae. Aquac. Res. 37: 1671-1675 Abstract

Fopp-Bayat D, Jankun M, Woznicki P. 2007. Viability of diploid and triploid larvae of Siberian sturgeon and bester hybrids. Aquac. Res. 38: 1301–1304 Abstract

Fopp-Bayat D. Jankun M. Woznicki P. Kolman R. 2007. Viability of diploid and triploid larvae of Siberian sturgeon and bester hybrids. Aquaculture Research 38: 1301-1304 Abstract

m = metacentric; sm = submetacentric; a = acrocentric; mc = micro chromosomes; FN = fondamental number

Pseudoscaphirhynchus kaufmanni

Kovalev KV. Balashov DA. Cherniak AL. Lebedeva EB. Vasil'Eva ED. Vasil'Ev VP. 2014. The karyotype of the amu darya sturgeon, Pseudoscaphirhynchus kaufmanni (Actinopterygii: Acipenseriformes: Acipenseridae). Acta Ichthyologica et Piscatoria, 44: 111-116 Abstract